
Object Oriented Testing

Lecture - 9

Source :”Applying UML patterns “,Craig Larman, second edition
chapter 21

CX-006-3-3 Object Oriented Methods with UML

Topics

 Analysis and Design Testing

 Class Tests

 Integration Tests

 Validation Tests

 System Tests

CX-006-3-3 Object Oriented Methods with UML

Objectives

 To discuss when testing takes place in the life cycle

 Test-driven development advocates early testing!

 To cover the strategies and tools associated with object oriented

testing

 Analysis and Design Testing

 Class Tests

 Integration Tests

 Validation Tests

 System Tests

 To discuss test plans and execution for projects

analysis design code test ?

CX-006-3-3 Object Oriented Methods with UML

Object-Oriented Testing

 When should testing begin?

 Analysis and Design:

 Testing begins by evaluating the OOA and OOD models

 How do we test OOA models (requirements and use cases)?

 How do we test OOD models (class and sequence diagrams)?

 Programming:

 How does OO make testing different from procedural programming?

 Concept of a ‘unit’ broadens due to class encapsulation

 Integration focuses on classes and their context of a use case
scenario

CX-006-3-3 Object Oriented Methods with UML

The Bug Curve

CX-006-3-3 Object Oriented Methods with UML

YAHOO!

CX-006-3-3 Object Oriented Methods with UML

Testing Analysis and Design

 Syntactic correctness:

 Are UML and ADT notation used correctly?

 Semantic correctness:

 Does the model reflect the real world problem?

 Is UML used as intended by its designers?

 Testing for consistency:

 An inconsistent model has representations in one part that are not reflected

in other portions of the model

CX-006-3-3 Object Oriented Methods with UML

Testing OO Code

Class tests Integration
tests

Validation
tests

System
tests

CX-006-3-3 Object Oriented Methods with UML

[1] Class (Unit) Testing

 Smallest testable unit is the encapsulated class

 Test each operation as part of a class hierarchy
because its class hierarchy defines its context of use

 Approach:

 Test each method (and constructor) within a class

 Test the state behavior (attributes) of the class between methods

 How is class testing different from conventional testing?

 Conventional testing focuses on input-process-output,
whereas class testing focuses on each method, then designing
sequences of methods to exercise states of a class

 But white-box testing can still be applied

CX-006-3-3 Object Oriented Methods with UML

Class Testing Process

class
to be
tested

test cases

results

software
engineer

How to test?

Why a loop?

CX-006-3-3 Object Oriented Methods with UML

Class Test Case Design

1. Identify each test case uniquely
- Associate test case explicitly with the class and/or method to be tested

2. State the purpose of the test

3. Each test case should contain:

a. A list of messages and operations that will be exercised as a
consequence of the test

b. A list of exceptions that may occur as the object is tested

c. A list of external conditions for setup (i.e., changes in the environment
external to the software that must exist in order to properly conduct the
test)

d. Supplementary information that will aid in understanding or implementing
the test

 Automated unit testing tools facilitate these requirements

CX-006-3-3 Object Oriented Methods with UML

Challenges of Class Testing

 Encapsulation:

 Difficult to obtain a snapshot of a class without building extra methods

which display the classes’ state

 Inheritance and polymorphism:

 Each new context of use (subclass) requires re-testing because a method

may be implemented differently (polymorphism).

 Other unaltered methods within the subclass may use the redefined

method and need to be tested

 White box tests:

 Basis path, condition, data flow and loop tests can all apply to individual

methods, but don’t test interactions between methods

CX-006-3-3 Object Oriented Methods with UML

Random Class Testing

I. Identify methods applicable to a class

II. Define constraints on their use – e.g. the class must always be initialized first

III. Identify a minimum test sequence – an operation sequence that defines the
minimum life history of the class

IV. Generate a variety of random (but valid) test sequences – this exercises
more complex class instance life histories

 Example:

 An account class in a banking application has open, setup, deposit,
withdraw, balance, summarize and close methods

 The account must be opened first and closed on completion

 Open – setup – deposit – withdraw – close

 Open – setup – deposit –* [deposit | withdraw | balance | summarize] –
withdraw – close. Generate random test sequences using this template

CX-006-3-3 Object Oriented Methods with UML

Integration Testing

 OO does not have a hierarchical control structure so conventional top-down

and bottom-up integration tests have little meaning

 Integration applied three different incremental strategies:

 Thread-based testing: integrates classes required to respond to one input

or event

 Use-based testing: integrates classes required by one use case

 Cluster testing: integrates classes required to demonstrate one

collaboration

CX-006-3-3 Object Oriented Methods with UML

Random Integration Testing

 Multiple Class Random Testing

 For each client class, use the list of class methods to generate a series

of random test sequences.

Methods will send messages to other server classes.

 For each message that is generated, determine the collaborating class

and the corresponding method in the server object.

 For each method in the server object (that has been invoked by

messages sent from the client object), determine the messages that it

transmits

 For each of the messages, determine the next level of methods that are

invoked and incorporate these into the test sequence

CX-006-3-3 Object Oriented Methods with UML

Validation Testing

 Are we building the right product?

 Apply:

 Use-case scenarios from the software requirements specification

 Acceptance tests through alpha (at developer’s site) and beta (at

customer’s site) testing with actual customers

CX-006-3-3 Object Oriented Methods with UML

System Testing

Types of System Testing:

 Recovery testing: how well and quickly does the system recover from faults

 Security testing: verify that protection mechanisms built into the system will
protect from unauthorized access (hackers, disgruntled employees, fraudsters)

 Stress testing: place abnormal load on the system

 Performance testing: investigate the run-time performance within the context of
an integrated system

CX-006-3-3 Object Oriented Methods with UML

Testing Tools

Programming
Language

Automated testing Tool for Unit Testing

C++ Microsoft Unit Testing Framework for C++

Java Junit

.Net Programming
Language

Nunit,XUnit

Prolog PIUnit

Python Unittest

CX-006-3-3 Object Oriented Methods with UML

Sample Unit Test Code in Microsoft Unit

Testing Framework

#include "stdafx.h"

#include <CppUnitTest.h>

#include "..\MyProjectUnderTest\MyCodeUnderTest.h"

using namespace Microsoft::VisualStudio::CppUnitTestFramework;

TEST_CLASS(TestClassName)

{

public: TEST_METHOD(TestMethodName)

{ // Run a function under test here.

Assert::AreEqual(expectedValue, actualValue, L"message",

LINE_INFO());

}

}

CX-006-3-3 Object Oriented Methods with UML

Testing Summary

Testing can contribute to improved quality by helping the

programmers to identify problems early in the development

process.

