
Object Oriented Methods with

UML

Introduction to Design Patterns-

Lecture 8

CX-006-3-3 Object Oriented Methods with UML

 Topics(03/05/16)

• Design Patterns

CX-006-3-3 Object Oriented Methods with UML

Design Pattern

 In software engineering, a design pattern is a general

repeatable solution to a commonly occurring problem in

software design.

 It is a description or template for how to solve a problem that

can be used in many different situations.

CX-006-3-3 Object Oriented Methods with UML

What is Gang-of-Four DP?

 In 1994, four authors Erich Gamma, Richard Helm, Ralph Johnson and

John Vlissides published a book titled Design Patterns - Elements of

Reusable Object-Oriented Software which initiated the concept of

Design Pattern in Software development.

 These authors are collectively known as Gang of Four (GOF).

According to these authors design patterns are primarily based on the

following principles of object orientated design.

 Program to an interface not an implementation

 Favor object composition over inheritance

CX-006-3-3 Object Oriented Methods with UML

Issues in Software Design

 Concurrency:

 How to decompose the system into processes ,tasks and threads.

 Controlling and Handling of Events

 How to organize the flow of data to control temporal events

 Distribution

 How the objects communicate with each other.

 Interactive systems

 Which approach is used to interact with the users.

 Persistence

 How to handle the persistent data.

CX-006-3-3 Object Oriented Methods with UML

Types of Design Patterns

S.
N.

Pattern & Description

1 Creational Patterns

These design patterns provide a way to create objects while hiding the creation logic,

rather than instantiating objects directly using new opreator. This gives program more

flexibility in deciding which objects need to be created for a given use case.

2 Structural Patterns

These design patterns concern class and object composition. Concept of inheritance is

used to compose interfaces and define ways to compose objects to obtain new

functionalities.

3 Behavioral Patterns

These design patterns are specifically concerned with communication between objects.

4 J2EE Patterns

These design patterns are specifically concerned with the presentation tier. These

patterns are identified by Sun Java Center.

CX-006-3-3 Object Oriented Methods with UML

Creational patterns

 Abstract Factory

 Builder

 Factory Method

 Object Pool

 Prototype

 Singleton

CX-006-3-3 Object Oriented Methods with UML

Structural patterns

 Adapter

 Bridge

 Composite

 Decorator

 Facade

 Flyweight

 Private Class Data

 Proxy

CX-006-3-3 Object Oriented Methods with UML

Behavioral patterns

 Chain of Responsibility

 Command

 Interpreter

 Iterator

 Mediator

 Memento

 Null Object

 Observer

 State

 Strategy

 Template Method

 Visitor

CX-006-3-3 Object Oriented Methods with UML

Creational Pattern-Singleton

 Problem:

Application needs one, and only one, instance

of an object. Additionally, lazy initialization and

global access are necessary.

CX-006-3-3 Object Oriented Methods with UML

Discussion

 Make the class of the single instance object

responsible for creation, initialization, access, and

enforcement.

 Declare the instance as a private static data

member.

 Provide a public static member function that

encapsulates all initialization code, and provides

access to the instance.

CX-006-3-3 Object Oriented Methods with UML

Singleton pattern

 Solution :Singleton pattern

CX-006-3-3 Object Oriented Methods with UML

Singleton pattern

CX-006-3-3 Object Oriented Methods with UML

Check list-Singleton pattern

 Define a private static attribute in the "single instance" class.

 Define a public static accessor function in the class.

 Do "lazy initialization" (creation on first use) in the accessor

function.

 Define all constructors to be protected or private.

 Clients may only use the accessor function to manipulate

the Singleton.

CX-006-3-3 Object Oriented Methods with UML

Sample Code-Singleton

 Implementation -Singleton

Singleton.txt

CX-006-3-3 Object Oriented Methods with UML

Structural pattern-Adapter

 Problem

An "off the shelf" component offers compelling functionality that

you would like to reuse, but its "view of the world" is not

compatible with the philosophy and architecture of the system

currently being developed.



CX-006-3-3 Object Oriented Methods with UML

Discussion

 Adapter is about creating an intermediary abstraction that

translates, or maps, the old component to the new system.

 Clients call methods on the Adapter object which redirects

them into calls to the legacy component.

 This strategy can be implemented either with inheritance or

with aggregation.



CX-006-3-3 Object Oriented Methods with UML

Discussion

CX-006-3-3 Object Oriented Methods with UML

Discussion

Class description:

AbstractPlug : Abstract Target class

Plug : Concrete Target class

AbstractSwitchBoard : Abstract Adaptee class

SwitchBoard : Concrete Adaptee class

Adapter : Adapter class

The Adapter could also be thought of as a "wrapper".

CX-006-3-3 Object Oriented Methods with UML

Check list-Adapter Pattern

 Identify the players: the component(s) that want to be accommodated

(i.e. the client), and the component that needs to adapt (i.e. the

adaptee).

 Identify the interface that the client requires.

 Design a "wrapper" class that can "impedance match" the adaptee to the

client.

 The adapter/wrapper class "has a" instance of the adaptee class.

 The adapter/wrapper class "maps" the client interface to the adaptee

interface.

 The client uses (is coupled to) the new interface



CX-006-3-3 Object Oriented Methods with UML

AbstractPlug Code

class AbstractPlug

{ public:

void virtual RoundPin(){ }

void virtual PinCount(){ }

};

CX-006-3-3 Object Oriented Methods with UML

// Concrete Target

class Plug : public AbstractPlug

{ public: void RoundPin()

{ cout << " I am Round Pin" << endl;

}

void PinCount()

{ cout << " I have two pins" << endl;

}

};

CX-006-3-3 Object Oriented Methods with UML

// Abstract Adaptee

 // Abstract Adaptee class
AbstractSwitchBoard

{ public:

void virtual FlatPin() {}

void virtual PinCount() {}

}

CX-006-3-3 Object Oriented Methods with UML

// Concrete Adaptee

class SwitchBoard : public AbstractSwitchBoard

{

public: void FlatPin()

{ cout << " Flat Pin" << endl; }

void PinCount()

{ cout << " I have three pins" << endl; }

};

CX-006-3-3 Object Oriented Methods with UML

// Adapter class

Adapter : public AbstractPlug

{

public: AbstractSwitchBoard *T;

Adapter(AbstractSwitchBoard *TT)

{ T = TT; }

void RoundPin()

{ T->FlatPin(); }

void PinCount()

{ T->PinCount(); }

};

CX-006-3-3 Object Oriented Methods with UML

// Client code

void _tmain(int argc, _TCHAR* argv[])

{

SwitchBoard *mySwitchBoard = new SwitchBoard;

AbstractPlug *adapter = new Adapter(mySwitchBoard);

adapter->RoundPin();

adapter->PinCount();

}

CX-006-3-3 Object Oriented Methods with UML

References

 https://sourcemaking.com/design_patterns/

