[image: image1.jpg]—~
"‘Il

=EF-RE]

ECOLE D'IMNGEMIELIRP



[image: image1.jpg]

Written Exam 

Thursday, December 18th 2008

Duration : 2 hours

No documents allowed

You can use french or english to answer the questions

Each question is worth 1 point, except :

OOL Basic concepts : question e) 2 points

C# features

question g) 2 points

.NET features

question d) 2 points

Exercise 1 : OOL Basic concepts

a)
Why is C# a hierarchical object oriented language ?

C# is a hierarchical object oriented language because (one of out two answers is enough)

· All classes inherit from the object class

· Multiple inheritance is not allowed

b)
What is an interface ?

An interface is a class definition whose goal is only to be inherited in order to provide implementations. An interface can’t be instantiated. It’s a programming contract.

c)
Where (and why) must a C# programmer write the abstract keyword ?


A programmer must write the abstract keyword to qualify a class when :

· This class contains an abstract method definition;

· This class inherits from an abstract class or an interface and doesn’t provide all the implementations for the abstract methods or method signatures.

(One out of the two answers required)

d)
Does polymorphism occur in the following C# code ? (write all the lines displayed by this program before answering by yes or no)

class B

{


public B()


{



System.Console.Writeline("a new B object");

}

public void method()

{


System.Console.Writeline("calling B::method()");

}

}

class D : B

{


public D:base()


{



System.Console.Writeline("a new D object");

}

public new void method()

{


System.Console.Writeline("calling D::method()");

}

}

public class test

{


static void Main(string[] args)


{



D obj_der = new D();



B obj_base = new D();



obj_der.method();



obj_base.method();

}

}

Output :

a new B object

a new D object

a new B object

a new D object

calling D::method()

calling B::method()

Polymorphism doesn’t take place as the method method isn’t overridden in calls D but is masked : early binding is used, not late binding.

e) let the myTh object be an array of threads : (Thread [] myTh = new Thread[5]; for example). All the threads inside myTh are supposed to run the same method, which contains a critical section. How can you ensure that only one thread can access the critical section at one time ? (give an example with C# code).

Using locks or monitor or semaphore

Students should have something like this :

class toBeRun

{


private static object _criticalSectionAccess = new object();


public void method()


{



lock(_criticalSectionAccess)



{




// Critical section code;

}

}

}

In main : 

Thread [] myTh = new Thread[5];

For (int i=0; i < 5; i++)

{

myTh[i] = new Thread(new ThreadStart(new toBeRun().method);

myth[i].Start();

}

Exercise 2 : C# Features

a) A C# developper wants to write a container class : the purpose of this class is to describe how objects will be stored inside this container. Of course, the developper wants this behaviour to be independent of the class of the objects stored in it. There are two possible ways to implement such a container class :

· Just create the container and allow it to store objects from the object class; so any object can be stored in it;

· Create a generic container using the keyword generic (templates).

Please explain to this developper which solution is the best.

The best solution is (of course) to create a generic container to specify the behaviour of the container independently of the class of objects to be stored : this class will be chosen when instantiating the generic (or template) container (such as the generic System.Collections.Generic.List built-in class).

Using a container of object (such as a System.Collections.ArrayList) would allow objects from possibly very different classes to be stored in this container at the same time. In terms of behaviour, such objects would only share methods belonging to the object class (ToString(), Equals(), GetHashCode(), and GetType()). Intensive downcasting would be used.

b) What is the benefit of using the foreach statement instead of the plain old for statement ?

Using this statement, one can iterate through a collection without knowing its size and without using an int counter.

c) Explain how you can simply make a client / server application using C# built-in classes. The server is supposed to handle up to 8 clients at a time. You have to answer by giving clear explanations without writing C# code.

The server will create a TcpListener object,. This object will accept() client connections, returning for each accept() a TcpClient object, and create a thread to handle the dialog between the TcpClient object on the server and the TcpClient from the client.

The client only has to create a TcpClient object by giving the server name (or IP address) and the port for connection.

Communications will be supported by StreamReader and StreamWriter objects.

d) What is a delegation class ? What is a delegate ?

A delegation class binds a method signature (return type, parameters numbers and types, where types means built-in tyes, structs or classes). An instance of a delegation class is a delegate, which will be able to point to (or register) a method having a signature compatible with the delegation class definition.

A delegate is roughly a pointer to methods (calling the delegate will provoke a call to all methods it currently points to)

e) Explain (with or without C# code) how an object can receive an event from another object.

The object receiving the event has to subscribe to the delegate of the object raising the event :

Receveir r; // r has the following method : void action(object sender, System.EventArgs e){// react to the event}

Transmittor t; // containing a delegate named del for instance

t.del += new myDelegateClass(r.action);

with the following code for creating the del delegate :

public delegate void myDelegateClass(object sender, System.EventArgs e);

inside the t class :

public event myDelegateClass del;

f) What is a property ? Write an example of a read-only property. Write an example of an indexer property.

A property is a set of accessors and mutators, using the syntax of an attribute but executing the set and/or get methods to access and/or modify private attributes.

Example of a read-only property :

Private string _myString;

public string myString

{


get 

{


return _myString;

}

}

Example of an indexer : indexer redefines the [] operator

public class this[class]

{


get

{}


set

{}

}

g) Let X be a class inheriting from an Isomething interface. What must you write inside the X class ? What can be written in the Isomething interface ?

In Isomething : signatures of methods, properties, events and indexers

In X : implementation of all signatures from the Isomething interface, or X will be abstract

Exercise 3 : .NET Features

a) What does "compilation" really means for C# ? What is the CLR ?

Compilation doesn’t produce a standalone executable file (binary file), but produces a MSIL file that needs the CLR (common Language Runtime) to be translated into native code. Note that this MSIL file can have the .exe (source of possible misunderstanding about the “compilation” word) or .dll extension. The CLR is the .NET virtual machine.

b) Which tools would be necessary to execute a C# application on a Unix / Linux environment ?

A Unix / Linux version of the CLR would be the main tool to adapt in order to make MSIL files executed.

c) How can you initialize the properties of a component (such as a button, a label, a textbox) ?

Those properties can be initialized through C# code (in .cs files) or through the properties windows of the Visual Studio Designer.

d) What are the benefits of using the ADO.NET classes named xxxDataAdapter and DataSet ? Which is the language (here "language" means representation, encoding) used to store the structure of data inside a DataSet object ?

The xxxDataAdapter (where xxx can be SQL, Oracle, OleDB, ODBC) provides the low-level interface to the physical storage. That’s why a different version of this class exists, depending on the database. The DataAdapter retrieves and updates data by executing the associated SQL queries (insert, select, update, delete, and even stored procedures).

The DataSet contains an in-memory view of the data. The structure of a DataSet is described using the XML language.



page 7/7

